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Abstract
The optical absorption spectra of two-dimensional (2D) arrays of spatially dispersive metallic
nanoparticles is examined. The corresponding non-local dielectric function of the spheres is
provided by (a) the hydrodynamic approximation and (b) the Lindhard theory. More
specifically, it is shown that the adoption of either types of non-local dielectric functions
(hydrodynamic or Lindhard-type) for dilute 2D arrays of spheres does not alter the structure of
the optical absorption spectrum but leads to a blue-shift of all its distinct features. This effect
becomes more prominent as the radius of the nanoparticles decreases. However, for a
close-packed arrangement of spheres, a non-local dielectric function provides a significantly
different optical spectrum than the local one, due to the dominant role of near-field effects,
which strongly depend on the choice of the dielectric function of the metal.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Plasmonics constitutes a new, emerging field of condensed
matter which deals with phenomena associated with the in-
teraction of light with surface modes in metallic nanostruc-
tures. Of particular interest is the interaction of light with ar-
rays of metallic nanoparticles and nanohole arrays (for a re-
cent review see [1] and references therein). Recent advances in
electron-beam lithography and self-assembly nanofabrication
techniques enable the preparation of well-defined systems of
nanoparticles with a tailored shape, size and arrangement, and
allow for the observation of new, interesting and potentially
useful physical phenomena [2–6].

The theoretical treatment of light interaction with arrays
of metallic nanoparticles is principally studied by means of
the multiple-scattering theory either in its bulk [7, 8] or
layer formulation [9–14]. Usually, this treatment is based
on the assumption of a local electromagnetic (EM) response,
which means that the dielectric function describing the optical
response of metals depends only on the angular frequency ω

and is independent of the wavevector k. In a recent work [15],
a non-local dielectric function for the metal has been assumed
for dilute three-dimensional crystals of metal-coated dielectric

spheres without, however, introducing dramatic effects in the
absorption spectra compared to a typical local Drude-type
dielectric function. In the past, the adoption of a non-local
optical response for metals has been employed for single metal
particles [16–19] and small aggregates of such [20, 21] as well
as for single metal nanoshells [22]. The common observation
of the above studies is a blue-shift of the dipole surface
plasmon resonance and a small secondary structure due to the
excitation of bulk-plasmon resonances.

The present work presents rigorous electrodynamics
calculations of the optical response of two-dimensional (2D)
ordered arrays of metal nanoparticles by means of the
layer-multiple-scattering (LMS) method [23–25]. The metal
nanoparticles are assumed to be spatially dispersive and
are described by a wavevector-dependent dielectric function
according to the hydrodynamic [31] and Lindhard [32]
models. The optical absorption spectra from arrays of spatially
dispersive particles are compared against those obtained for
particles described by a local, Drude-type dielectric function.
The prominent features of the absorption spectrum obtained
for a non-local dielectric function are blue-shifted relative to
those of the local case. The shift increases with decreasing
the sphere radius for constant surface coverage. For an array
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of touching spheres, the optical absorption spectra in the local
and non-local treatments differ markedly. For small values of
the metal loss factor, the assumption of a non-local response
induces an evident fine structure of bulk-plasmon resonances.
When the electron scattering at the particle boundary is taken
into account, the loss factor is greatly enhanced, leading
to a suppression of fine details of the absorption spectrum.
However, even in this case, the absorption spectra in the
local and non-local pictures differ significantly. Namely,
when a local Drude-type dielectric function is employed, the
absorption spectrum shows an unusually strong absorption tail
for very low frequencies, which is neither predicted in the non-
local treatment nor has ever been measured experimentally in
such systems. The paper is organized as follows. Section 2
presents a brief outline of the theory used in this paper.
Section 3 presents results for 2D periodic arrays of spheres and
section 4 concludes the paper.

2. Theory

We consider a single nonmagnetic spherical scatterer of radius
S described by a transverse dielectric function, εT, and a
longitudinal one, εL. The scatterer is assumed to be embedded
within a nonmagnetic host homogeneous material whose
dielectric function is denoted by εh. For this case, the E-
components of the corresponding scattering T -matrix have
been provided by Ruppin [16]

TEl(ω) =
{{

j ′
l (qLr)

[
jl(qsr)

∂

∂r
(r jl(qhr))εs − jl(qhr)

× ∂

∂r
(r jl(qsr))εh

]
− cl jl(qhr)

}{
j ′
l (qLr)

[
h+

l (qhr)

× ∂

∂r
(r jl(qsr))εh − jl(qsr)

∂

∂r
(rh+

l (qhr))εs

]}−1}
r=S

(1)

where

cl = l(l + 1)
jl(kLS)

qLS
jl(kTS)(εT − εh). (2)

For cl = 0, equation (1) takes the usual form, valid for a local
dielectric function. jl is the spherical Bessel function and h+

l
the spherical Hankel function. qh = √

εhω/c whilst qT and
qL are the transverse and longitudinal wavenumbers within the
sphere, respectively. They are given by

q2
T = ε(qT, ω)ω2/c2 (3)

and
ε(qL, ω) = 0. (4)

The H -component of the T -matrix remains the same as
in the case of a scatterer described by a single (transverse)
local dielectric function. In the derivation of equation (1) the
electric-field spherical-wave expansion within the sphere, apart
from the transverse components, also contains a longitudinal
component [16].

Within the hydrodynamic model [31], the transverse εT

and longitudinal dielectric functions are given by

εT(ω) = 1 − ω2
p

ω(ω + iγ )
(5)

εL(q, ω) = 1 − ω2
p

ω2 − βq2 + iωγ
, (6)

where ωp is the bulk plasma frequency of the metal and γ

is the loss factor. β = 3
5v

2
F where vF is the Fermi velocity

of the metal. Equation (5) is the ordinary Drude dielectric
function which is widely used to describe metals within the
local response approximation. Substituting equation (6) into
equation (4) we obtain the longitudinal wavenumber within a
metal sphere

q2
l = (ω2 + iωγ − ω2

p)/β. (7)

Within the Lindhard [32] theory, εT and εL are provided by [16]

εT(q, ω) = 1 − ω2
p

ω(ω + iγ )

3

2α2

(
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α
arctan α − 1
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3
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ωγ

(
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α
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(9)

where

α2 = − q2v2
F

(ω + iγ )2
. (10)

The corresponding wavenumbers qT and qL of the Lindhard-
type dielectric functions are found by substituting equations (8)
and (9) into equations (3) and (4), respectively. The latter
are solved numerically using the corresponding qT, qL of the
hydrodynamic model as starting values. Having calculated
qT and qL in either models (hydrodynamic or Lindhard), one
can calculate the corresponding T -matrix from equation (1)
for a single metal sphere and from that solve the scattering
problem for a 2D array of spheres by means of the LMS
method [23–25]. The LMS method is ideally suited for
the calculation of the transmission, reflection and absorption
coefficients of an EM wave incident on a composite slab
consisting of a number of layers which can be either planes
of non-overlapping particles with the same 2D periodicity
or homogeneous plates. For each plane of particles, the
method calculates the full multipole expansion of the total
multiply scattered wave field and deduces the corresponding
transmission and reflection matrices in the plane-wave basis.
The transmission and reflection matrices of the composite slab
are evaluated from those of the constituent layers.

3. Results

The theory presented in the previous section is applied to the
case of a 2D square array of metallic (silver) spheres of radius
S occupying the sites of a square lattice of period a (see
figure 1). In what follows, we will use as frequency unit the
bulk plasma frequency of the metal ωp, and as length unit the
quantity c/ωp. For silver, h̄ωp = 9.2 eV [26, 27], and hence
the length unit is c/ωp = 21.46 nm. The bulk loss factor
is h̄γb = 0.02 eV. We note that the local Drude dielectric
function (equation (5)) is not sufficiently accurate for a wide
range of frequencies [28, 29] as it does not take into account
the interband transitions taking place in the metal. However,
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a S

Figure 1. A square lattice of spheres of radius S and period a, where
S/a = 0.4.

to the best of our knowledge, an analytic non-local dielectric
function which goes beyond the Drude model is not at hand
and, therefore, interband phenomena are not included in our
calculations.

Figure 2 shows absorption spectra for light incident
normally on 2D square arrays of silver spheres of different radii
and lattice constants for a fixed surface coverage of spheres,
f = π(S/a)2 = 0.503. In order to achieve converged
results, we have taken the cutoff lmax in the angular-momentum
expansion of the EM field to be equal to 5. We have also
taken into account 29 reciprocal-lattice vectors in the plane-
wave expansion of the EM field. For each case, figure 2
depicts the absorption curves for spheres described by local
and non-local dielectric functions. It is worth noting that
both the hydrodynamic and Lindhard models for the non-local
dielectric function of the metal yielded the same results. So,
the calculations were performed for the hydrodynamic model
(equations (5) and (6)) as it is simpler than the Lindhard one.
The parameter β in equation (6) is taken to be β/c2 = 1.29 ×
10−5 corresponding to the Fermi velocity vF = 1.4×106 m s−1

of silver. In figure 2, one observes that the main consequence
stemming from the adoption of a non-local dielectric function
is an overall shift towards higher frequencies (blue-shift) of the
structure of the absorption spectrum. The shift is caused by
the introduction of longitudinal waves within the silver spheres
which modify the internal electric field and correspondingly
the resonance condition [16]. However, it is evident that the
blue-shift is much more apparent as the radius of the spheres
becomes smaller. This is due to the fact that the longitudinal
waves which are taken into account in a non-local treatment
of the scattering from the arrays of spheres, are of evanescent
nature. Therefore, for large enough spheres their contribution
to the total electric field is appreciable only close to the surface
of the sphere. As the spheres become smaller, the area where
the longitudinal waves are important increases, giving rise to
more distinguishable effects when compared to local treatment
of scattering where longitudinal waves are not allowed. The
above are in accordance with previous non-local effective-
medium treatments [30].

The structure which is obvious in both local and non-
local treatments of the EM response of the metallic spheres
stems from the surface plasmon resonances taking place at

Figure 2. Absorption spectra of normally incident light for a square
lattice of silver (h̄ωp = 9.2 eV, h̄γb = 0.02 eV,
vF = 1.4 × 106 m s−1) spheres for different sphere radii and lattice
constants. For all curves, the surface coverage is the same,
f = π(S/a)2 = 0.503. The inset shows the absorption spectrum for
Sωp/c = 0.1, in the dipole approximation. The solid lines refer to
metallic spheres described by a non-local dielectric function whilst
the broken lines to those described by a local one.

each sphere. Of course, there is strong interaction between
the surface plasmon resonances of neighbouring spheres,
giving rise to broader absorption lines. The lowest frequency
minimum corresponds to a dipole excitation of the metallic
spheres which is around the single-sphere surface resonance
ωsp = ωp/

√
3. This is also evident from the inset of figure 2(c)

which shows that the main absorption peaks are practically
reproduced from the dipole approximation (lmax = 1). The
second lowest absorption peak corresponds to a quadrupole
surface plasmon, etc. It is evident that the higher-multipole
absorption peaks become more pronounced as the spheres
become larger, a phenomenon which is evident already from
the absorption cross-section of a single metallic sphere [33].

In figure 2(c) and for frequencies above the bulk plasma
frequency, i.e. ω/ωp > 1, we observe a fine structure of small
absorption peaks which is apparent only for spatially dispersive
spheres (non-local dielectric function). This structure stems
from the excitation of bulk plasmons at the spheres of the
array [16]. The bulk plasma absorption peaks are also slightly
evident for larger spheres (see figure 2(b) for ω/ωp > 1). We
note, however, that in an experimentally obtained absorption
spectrum it is very hard to observe bulk-plasmon excitations
since the actual losses of a metallic nanoparticle are much
larger than those of bulk metal due to the additional scattering
of the conduction electrons at the boundary of the particle.
The latter effect obscures the observation of fine details in
the absorption spectrum (see the discussion below). The bulk
plasma excitations in metallic nanoparticles can possibly be
confirmed by electron energy-loss spectroscopy as is the case
for bulk metals.

It is well known that the effect and the significance of
a non-local dielectric function is much more dramatic when
near-field phenomena come into play. For example, non-local
dielectric functions must be used for accurate calculations of
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Figure 3. Absorption spectra of normally incident light for a square
lattice of close-packed metallic spheres with Sωp/c = 0.125 and
aωp/c = 0.25. The inset shows the same absorption spectra in the
dipole approximation. The solid line refers to metallic spheres
described by a non-local dielectric function whilst the broken line to
those described by a local one.

the van der Waals forces between nanoparticles, especially
when the particles are in very close proximity [34]. Also,
when calculating the thermal near field close to a metallic
surface a non-local optical response should be employed [35].
Therefore, we have also studied the case where the spheres
of the array are touching, i.e. S/a = 0.5 in figure 1. The
corresponding absorption spectrum is shown in figure 3 and
it is obtained for 129 reciprocal-lattice vectors and lmax = 15.
It is worth noting, however, that the corresponding curve for
the non-local dielectric function converged for fewer angular-
momentum terms, i.e. lmax = 12. This may be due to the
fact that when near-field effects are dominant (such as the case
of touching spheres) a non-local dielectric function is a more
natural choice than the local one [20].

From figure 3 it is obvious that the non-local and local
treatments provide drastically different absorption spectra. For
example, the local dielectric function predicts an absorption
maximum around ω/ωp ∼ 0.15 which is absent in the case of a
non-local dielectric function. As can be also seen from the inset
of figure 3, this low-frequency peak is not evident in the dipole
approximation (lmax = 1) but is formed progressively as lmax

increases. This may seem to be a counterintuitive result since
the higher-multipole surface plasmon resonances of a single
metallic sphere, and accordingly the corresponding resonance
bands generated by the interaction of neighbouring spheres,
always lie above the dipole contribution (in frequency).
However, since metal covers about 78.5% of the 2D space in
a close-packed arrangement of spheres, the optical response
of such an array can be alternatively described as that
of a homogeneous metal containing air holes (cavities) of
nanometre scale. Each air hole is defined as the space
between four close-packed spheres. In this picture, the
transmission/absorption resonances stem from the interaction
of the surface-cavity modes of neighbouring holes rather than
from the interaction of modes of neighbouring spheres. In
the first case (interaction of neighbouring air holes) the cavity
modes generated from higher-multipole contributions lie below

Figure 4. The same as figure 2 but with scattering at the particle
boundary taken into account in the loss factor γ . For (a)
h̄γ = 0.13 eV, (b) h̄γ = 0.23 eV, and (c) h̄γ = 0.45 eV.

the dipole ones in frequency as has been shown for the case
of spherical air holes in a homogeneous metal [36–38]. A
2D array of touching spheres is in the cross-over regime
between a network topology (air cavities in a metal) and a
cermet one (metal bodies in air) where these two regimes
exhibit entirely different characteristics. For example, a system
with network topology possesses a cutoff frequency below
which no propagation is allowed [36] whilst in the cermet
topology such a frequency is absent. Therefore, there is no
unambiguous physical picture illuminating the mechanism of
optical absorption in the case of touching spheres, although a
rigorous numerical calculation is at hand. The only exception
is the peak structure above ωp which is due to the bulk plasma
excitations of the spheres.

In figures 2 and 3 we have neglected the additional light
absorption which takes place within the silver particles due to
the scattering of the electrons at the particle boundary. In this
case, the corrected loss factor γ is provided by [27]

γ = γb + vF S−1. (11)

As is evident from the above, the correction becomes
significant as the particle size decreases. In order to take
into account the effect of the electron scattering at the particle
boundary, we have recalculated the absorption spectra of
figure 2 for the suitable loss factor in each case: for Sωp/c =
0.4 (S = 8.58 nm) the loss factor is h̄γ = 0.13 eV, for
Sωp/c = 0.2 (S = 4.29 nm) h̄γ = 0.23 eV, and for
Sωp/c = 0.1 (S = 2.15 nm) h̄γ = 0.45 eV. It is evident that
the fine structure of figure 2 is lost. Namely, all the higher-
multipole peaks below ωp are submerged within the dipole
one [27] whilst the weak bulk-plasmon excitations above ωp

are evidently widened and lost. However, the blue-shift of
the absorption peak introduced by the adoption of a non-local
dielectric function is still present and becomes more obvious as
the particle size decreases. We note that for very small spheres
such as those of figures 2(c) and 4(c), the blue-shift introduced
by the non-locality of the dielectric function is compensated
by a red-shift when a more rigorous, microscopic treatment is
employed [39, 40].
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Figure 5. The same as figure 3 but with scattering at the particle
boundary taken into account in the loss factor, i.e. h̄γ = 0.36 eV.

Finally, in figure 5, we have recalculated the absorption
spectra of figure 3 with the electron scattering at the particle
boundary taken into account; the latter enhances dramatically
the loss factor γ . Again, the dominant effect is the merging
of all distinct peaks of figure 3 into a single one, in both local
and non-local treatments. Also, the blue-shift of the non-local
absorption peak is evident. However, the surprising result of
figure 5 is the wide absorption tail in the long-wavelength
limit (low frequencies) obtained for the local Drude-type
dielectric function only, implying an enhanced absorption in
the infrared (IR) region. We note enhanced IR absorption
has been predicted theoretically and observed experimentally
only for fractal aggregates of metal nanoparticles excluding
other topologies of close-packed structures either periodic or
random [41]. On the contrary, the non-local treatment does
not predict significant absorption in the long-wavelength limit
in accordance with previous work. The latter justifies the
adoption of a non-local treatment in close-packed topologies
such as that of figure 5.

4. Conclusions

The effect of a non-local dielectric function in the absorption
spectra of 2D arrays of metallic nanoparticles has been studied
by means of rigorous electrodynamic calculations. Both
hydrodynamic and Lindhard types of non-local dielectric
functions have generated the same absorption spectra. When
these spectra are compared with those obtained from the
assumption of a local, Drude-type, dielectric function, the
overall effect is a blue-shift of the absorption peaks stemming
from the surface plasmon excitations at the spheres of the array.
In the case of a square array of touching metallic spheres
the assumption of non-locality in the optical response of the
metallic spheres leads to a significantly modified absorption
spectrum compared to the local case. Namely, the use of
a local Drude-type dielectric function introduces a strong
absorption tail for very low frequencies in contrast to the
non-local treatment. Since this effect has not been reported
experimentally for periodic close-packed systems (only fractal
geometries demonstrate this effect) we may conclude that
the assumption of a non-local Drude-type function for close-
packed metallic systems constitutes a far more natural choice.
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